NCCOOS Trac Projects: Top | Web | Platforms | Processing | Viz | Sprints | Sandbox | (Wind)

root/gliderproc/trunk/MATLAB/util/hdrload.m

Revision 495 (checked in by cbc, 12 years ago)

Initial import of Stark code.

Line 
1 function [header, data] = hdrload(file)
2
3 % HDRLOAD Load data from an ASCII file containing a text header.
4 %     [header, data] = HDRLOAD('filename.ext') reads a data file
5 %     called 'filename.ext', which contains a text header.  There
6 %     is no default extension; any extensions must be explicitly
7 %     supplied.
8 %
9 %     The first output, HEADER, is the header information, returned
10 %     as a text array.
11 %     The second output, DATA, is the data matrix.  This data matrix
12 %     has the same dimensions as the data in the file, one row per
13 %     line of ASCII data in the file.  If the data is not regularly
14 %     spaced (i.e., each line of ASCII data does not contain the
15 %     same number of points), the data is returned as a column
16 %     vector.
17 %
18 %     Limitations:  No line of the text header can begin with
19 %     a number.  Only one header and data set will be read,
20 %     and the header must come before the data.
21 %
22 %     See also LOAD, SAVE, SPCONVERT, FSCANF, FPRINTF, STR2MAT.
23 %     See also the IOFUN directory.
24
25 % check number and type of arguments
26 if nargin < 1
27   error('Function requires one input argument');
28 elseif ~isstr(file)
29   error('Input argument must be a string representing a filename');
30 end
31
32 % Open the file.  If this returns a -1, we did not open the file
33 % successfully.
34 fid = fopen(file);
35 if fid==-1
36   error('File not found or permission denied');
37   end
38
39 % Initialize loop variables
40 % We store the number of lines in the header, and the maximum length
41 % of any one line in the header.  These are used later in assigning
42 % the 'header' output variable.
43 no_lines = 0;
44 max_line = 0;
45
46 % We also store the number of columns in the data we read.  This way
47 % we can compute the size of the output based on the number of
48 % columns and the total number of data points.
49 ncols = 0;
50
51 % Finally, we initialize the data to [].
52 data = [];
53
54 % Start processing.
55 line = fgetl(fid);
56 if ~isstr(line)
57   disp('Warning: file contains no header and no data')
58   end;
59 [data, ncols] = sscanf(line, '%f');
60
61 % We loop through the file one line at a time until we find some
62 % data.  After that point we stop checking for header information.
63 % This part of the program takes most of the processing time, because
64 % fgetl is relatively slow (compared to fscanf, which we will use
65 % later).
66 while isempty(data)
67   no_lines = no_lines+1;
68   max_line = max([max_line, length(line)]);
69   % Create unique variable to hold this line of text information.
70   % Store the last-read line in this variable.
71   eval(['line', num2str(no_lines), '=line;']);
72   line = fgetl(fid);
73   if ~isstr(line)
74     disp('Warning: file contains no data')
75     break
76     end;
77   [data, ncols] = sscanf(line, '%f');
78   end % while
79
80 % Now that we have read in the first line of data, we can skip the
81 % processing that stores header information, and just read in the
82 % rest of the data.
83 data = [data; fscanf(fid, '%f')];
84 fclose(fid);
85
86 % Create header output from line information. The number of lines and
87 % the maximum line length are stored explicitly, and each line is
88 % stored in a unique variable using the 'eval' statement within the
89 % loop. Note that, if we knew a priori that the headers were 10 lines
90 % or less, we could use the STR2MAT function and save some work.
91 % First, initialize the header to an array of spaces.
92 header = setstr(' '*ones(no_lines, max_line));
93 for i = 1:no_lines
94   varname = ['line' num2str(i)];
95   % Note that we only assign this line variable to a subset of this
96   % row of the header array.  We thus ensure that the matrix sizes in
97   % the assignment are equal.
98   eval(['header(i, 1:length(' varname ')) = ' varname ';']);
99   end
100
101 % Resize output data, based on the number of columns (as returned
102 % from the sscanf of the first line of data) and the total number of
103 % data elements. Since the data was read in row-wise, and MATLAB
104 % stores data in columnwise format, we have to reverse the size
105 % arguments and then transpose the data.  If we read in irregularly
106 % spaced data, then the division we are about to do will not work.
107 % Therefore, we will trap the error with an EVAL call; if the reshape
108 % fails, we will just return the data as is.
109 eval('data = reshape(data, ncols, length(data)/ncols)'';', '');
110
111 % And we're done!
Note: See TracBrowser for help on using the browser.