NCCOOS Trac Projects: Top | Web | Platforms | Processing | Viz | Sprints | Sandbox | (Wind)

root/gliderproc/trunk/MATLAB/seawater/sw_seck.m

Revision 495 (checked in by cbc, 12 years ago)

Initial import of Stark code.

Line 
1
2 function K = sw_seck(S,T,P)
3
4 % SW_SECK    Secant bulk modulus (K) of sea water
5 %=========================================================================
6 % SW_SECK  $Id: sw_seck.m,v 1.1 2003/12/12 04:23:22 pen078 Exp $
7 %          Copyright (C) CSIRO, Phil Morgan 1992.
8 %
9 % USAGE:  dens = sw_seck(S,T,P)
10 %
11 % DESCRIPTION:
12 %    Secant Bulk Modulus (K) of Sea Water using Equation of state 1980.
13 %    UNESCO polynomial implementation.
14 %
15 % INPUT:  (all must have same dimensions)
16 %   S = salinity    [psu      (PSS-78) ]
17 %   T = temperature [degree C (ITS-90)]
18 %   P = pressure    [db]
19 %       (alternatively, may have dimensions 1*1 or 1*n where n is columns in S)
20 %
21 % OUTPUT:
22 %   K = Secant Bulk Modulus  [bars]
23 %
24 % AUTHOR:  Phil Morgan 92-11-05, Lindsay Pender (Lindsay.Pender@csiro.au)
25 %
26 % DISCLAIMER:
27 %   This software is provided "as is" without warranty of any kind.
28 %   See the file sw_copy.m for conditions of use and licence.
29 %
30 % REFERENCES:
31 %    Fofonoff, P. and Millard, R.C. Jr
32 %    Unesco 1983. Algorithms for computation of fundamental properties of
33 %    seawater, 1983. _Unesco Tech. Pap. in Mar. Sci._, No. 44, 53 pp.
34 %    Eqn.(15) p.18
35 %
36 %    Millero, F.J. and  Poisson, A.
37 %    International one-atmosphere equation of state of seawater.
38 %    Deep-Sea Res. 1981. Vol28A(6) pp625-629.
39 %=========================================================================
40
41 % Modifications
42 % 99-06-25. Lindsay Pender, Fixed transpose of row vectors.
43 % 03-12-12. Lindsay Pender, Converted to ITS-90.
44
45 % CALLER: sw_dens.m
46 % CALLEE: none
47
48 %----------------------
49 % CHECK INPUT ARGUMENTS
50 %----------------------
51 if nargin ~=3
52    error('sw_seck.m: Must pass 3 parameters')
53 end %if
54
55 % CHECK S,T,P dimensions and verify consistent
56 [ms,ns] = size(S);
57 [mt,nt] = size(T);
58 [mp,np] = size(P);
59
60
61 % CHECK THAT S & T HAVE SAME SHAPE
62 if (ms~=mt) | (ns~=nt)
63    error('check_stp: S & T must have same dimensions')
64 end %if
65
66 % CHECK OPTIONAL SHAPES FOR P
67 if     mp==1  & np==1      % P is a scalar.  Fill to size of S
68    P = P(1)*ones(ms,ns);
69 elseif np==ns & mp==1      % P is row vector with same cols as S
70    P = P( ones(1,ms), : ); %   Copy down each column.
71 elseif mp==ms & np==1      % P is column vector
72    P = P( :, ones(1,ns) ); %   Copy across each row
73 elseif mp==ms & np==ns     % PR is a matrix size(S)
74    % shape ok
75 else
76    error('check_stp: P has wrong dimensions')
77 end %if
78
79 %***check_stp
80
81 %--------------------------------------------------------------------
82 % COMPUTE COMPRESSION TERMS
83 %--------------------------------------------------------------------
84 P = P/10;  %convert from db to atmospheric pressure units
85 T68 = T * 1.00024;
86
87 % Pure water terms of the secant bulk modulus at atmos pressure.
88 % UNESCO eqn 19 p 18
89
90 h3 = -5.77905E-7;
91 h2 = +1.16092E-4;
92 h1 = +1.43713E-3;
93 h0 = +3.239908;   %[-0.1194975];
94
95 AW  = h0 + (h1 + (h2 + h3.*T68).*T68).*T68;
96
97 k2 =  5.2787E-8;
98 k1 = -6.12293E-6;
99 k0 =  +8.50935E-5;   %[+3.47718E-5];
100
101 BW  = k0 + (k1 + k2*T68).*T68;
102
103 e4 = -5.155288E-5;
104 e3 = +1.360477E-2;
105 e2 = -2.327105;
106 e1 = +148.4206;
107 e0 = 19652.21;    %[-1930.06];
108
109 KW  = e0 + (e1 + (e2 + (e3 + e4*T68).*T68).*T68).*T68;   % eqn 19
110
111 %--------------------------------------------------------------------
112 % SEA WATER TERMS OF SECANT BULK MODULUS AT ATMOS PRESSURE.
113 %--------------------------------------------------------------------
114 j0 = 1.91075E-4;
115
116 i2 = -1.6078E-6;
117 i1 = -1.0981E-5;
118 i0 =  2.2838E-3;
119
120 SR = sqrt(S);
121
122 A  = AW + (i0 + (i1 + i2*T68).*T68 + j0*SR).*S;
123
124
125 m2 =  9.1697E-10;
126 m1 = +2.0816E-8;
127 m0 = -9.9348E-7;
128
129 B = BW + (m0 + (m1 + m2*T68).*T68).*S;   % eqn 18
130
131 f3 =  -6.1670E-5;
132 f2 =  +1.09987E-2;
133 f1 =  -0.603459;
134 f0 = +54.6746;
135
136 g2 = -5.3009E-4;
137 g1 = +1.6483E-2;
138 g0 = +7.944E-2;
139
140 K0 = KW + (  f0 + (f1 + (f2 + f3*T68).*T68).*T68 ...
141         +   (g0 + (g1 + g2*T68).*T68).*SR         ).*S;      % eqn 16
142
143 K = K0 + (A + B.*P).*P;  % eqn 15
144 return
145 %----------------------------------------------------------------------------
146
147
Note: See TracBrowser for help on using the browser.