1 |
|
---|
2 |
function cp = sw_cp(S,T,P) |
---|
3 |
|
---|
4 |
% SW_CP Heat Capacity (Cp) of sea water |
---|
5 |
%========================================================================= |
---|
6 |
% SW_CP $Id: sw_cp.m,v 1.1 2003/12/12 04:23:22 pen078 Exp $ |
---|
7 |
% Copyright (C) CSIRO, Phil Morgan 1993. |
---|
8 |
% |
---|
9 |
% USAGE: cp = sw_cp(S,T,P) |
---|
10 |
% |
---|
11 |
% DESCRIPTION: |
---|
12 |
% Heat Capacity of Sea Water using UNESCO 1983 polynomial. |
---|
13 |
% |
---|
14 |
% INPUT: (all must have same dimensions) |
---|
15 |
% S = salinity [psu (PSS-78)] |
---|
16 |
% T = temperature [degree C (ITS-90)] |
---|
17 |
% P = pressure [db] |
---|
18 |
% (P may have dims 1x1, mx1, 1xn or mxn for S(mxn) ) |
---|
19 |
% |
---|
20 |
% OUTPUT: |
---|
21 |
% cp = Specific Heat Capacity [J kg^-1 C^-1] |
---|
22 |
% |
---|
23 |
% AUTHOR: Phil Morgan, Lindsay Pender (Lindsay.Pender@csiro.au) |
---|
24 |
% |
---|
25 |
% DISCLAIMER: |
---|
26 |
% This software is provided "as is" without warranty of any kind. |
---|
27 |
% See the file sw_copy.m for conditions of use and licence. |
---|
28 |
% |
---|
29 |
% REFERENCES: |
---|
30 |
% Fofonff, P. and Millard, R.C. Jr |
---|
31 |
% Unesco 1983. Algorithms for computation of fundamental properties of |
---|
32 |
% seawater, 1983. _Unesco Tech. Pap. in Mar. Sci._, No. 44, 53 pp. |
---|
33 |
%========================================================================= |
---|
34 |
|
---|
35 |
% Modifications |
---|
36 |
% 99-06-25. Lindsay Pender, Fixed transpose of row vectors. |
---|
37 |
% 03-12-12. Lindsay Pender, Converted to ITS-90. |
---|
38 |
|
---|
39 |
% CALLER: general purpose |
---|
40 |
% CALLEE: none |
---|
41 |
|
---|
42 |
%---------------------- |
---|
43 |
% CHECK INPUT ARGUMENTS |
---|
44 |
%---------------------- |
---|
45 |
if nargin ~=3 |
---|
46 |
error('Must pass 3 parameters') |
---|
47 |
end %if |
---|
48 |
|
---|
49 |
% CHECK S,T,P dimensions and verify consistent |
---|
50 |
[ms,ns] = size(S); |
---|
51 |
[mt,nt] = size(T); |
---|
52 |
[mp,np] = size(P); |
---|
53 |
|
---|
54 |
|
---|
55 |
% CHECK THAT S & T HAVE SAME SHAPE |
---|
56 |
if (ms~=mt) | (ns~=nt) |
---|
57 |
error('S & T must have same dimensions') |
---|
58 |
end %if |
---|
59 |
|
---|
60 |
% CHECK OPTIONAL SHAPES FOR P |
---|
61 |
if mp==1 & np==1 % P is a scalar. Fill to size of S |
---|
62 |
P = P(1)*ones(ms,ns); |
---|
63 |
elseif np==ns & mp==1 % P is row vector with same cols as S |
---|
64 |
P = P( ones(1,ms), : ); % Copy down each column. |
---|
65 |
elseif mp==ms & np==1 % P is column vector |
---|
66 |
P = P( :, ones(1,ns) ); % Copy across each row |
---|
67 |
elseif mp==ms & np==ns % PR is a matrix size(S) |
---|
68 |
% shape ok |
---|
69 |
else |
---|
70 |
error('P has wrong dimensions') |
---|
71 |
end %if |
---|
72 |
|
---|
73 |
%***check_stp |
---|
74 |
|
---|
75 |
%------ |
---|
76 |
% BEGIN |
---|
77 |
%------ |
---|
78 |
P = P/10; % to convert db to Bar as used in Unesco routines |
---|
79 |
T68 = T * 1.00024; |
---|
80 |
|
---|
81 |
%------------ |
---|
82 |
% eqn 26 p.32 |
---|
83 |
%------------ |
---|
84 |
c0 = 4217.4; |
---|
85 |
c1 = -3.720283; |
---|
86 |
c2 = 0.1412855; |
---|
87 |
c3 = -2.654387e-3; |
---|
88 |
c4 = 2.093236e-5; |
---|
89 |
|
---|
90 |
a0 = -7.64357; |
---|
91 |
a1 = 0.1072763; |
---|
92 |
a2 = -1.38385e-3; |
---|
93 |
|
---|
94 |
b0 = 0.1770383; |
---|
95 |
b1 = -4.07718e-3; |
---|
96 |
b2 = 5.148e-5; |
---|
97 |
|
---|
98 |
Cpst0 = (((c4.*T68 + c3).*T68 + c2).*T68 + c1).*T68 + c0 + ... |
---|
99 |
(a0 + a1.*T68 + a2.*T68.^2).*S + ... |
---|
100 |
(b0 + b1.*T68 + b2.*T68.^2).*S.*sqrt(S); |
---|
101 |
|
---|
102 |
%------------ |
---|
103 |
% eqn 28 p.33 |
---|
104 |
%------------ |
---|
105 |
a0 = -4.9592e-1; |
---|
106 |
a1 = 1.45747e-2; |
---|
107 |
a2 = -3.13885e-4; |
---|
108 |
a3 = 2.0357e-6; |
---|
109 |
a4 = 1.7168e-8; |
---|
110 |
|
---|
111 |
b0 = 2.4931e-4; |
---|
112 |
b1 = -1.08645e-5; |
---|
113 |
b2 = 2.87533e-7; |
---|
114 |
b3 = -4.0027e-9; |
---|
115 |
b4 = 2.2956e-11; |
---|
116 |
|
---|
117 |
c0 = -5.422e-8; |
---|
118 |
c1 = 2.6380e-9; |
---|
119 |
c2 = -6.5637e-11; |
---|
120 |
c3 = 6.136e-13; |
---|
121 |
|
---|
122 |
del_Cp0t0 = (((((c3.*T68 + c2).*T68 + c1).*T68 + c0).*P + ... |
---|
123 |
((((b4.*T68 + b3).*T68 + b2).*T68 + b1).*T68 + b0)).*P + ... |
---|
124 |
((((a4.*T68 + a3).*T68 + a2).*T68 + a1).*T68 + a0)).*P; |
---|
125 |
|
---|
126 |
%------------ |
---|
127 |
% eqn 29 p.34 |
---|
128 |
%------------ |
---|
129 |
d0 = 4.9247e-3; |
---|
130 |
d1 = -1.28315e-4; |
---|
131 |
d2 = 9.802e-7; |
---|
132 |
d3 = 2.5941e-8; |
---|
133 |
d4 = -2.9179e-10; |
---|
134 |
|
---|
135 |
e0 = -1.2331e-4; |
---|
136 |
e1 = -1.517e-6; |
---|
137 |
e2 = 3.122e-8; |
---|
138 |
|
---|
139 |
f0 = -2.9558e-6; |
---|
140 |
f1 = 1.17054e-7; |
---|
141 |
f2 = -2.3905e-9; |
---|
142 |
f3 = 1.8448e-11; |
---|
143 |
|
---|
144 |
g0 = 9.971e-8; |
---|
145 |
|
---|
146 |
h0 = 5.540e-10; |
---|
147 |
h1 = -1.7682e-11; |
---|
148 |
h2 = 3.513e-13; |
---|
149 |
|
---|
150 |
j1 = -1.4300e-12; |
---|
151 |
S3_2 = S.*sqrt(S); |
---|
152 |
|
---|
153 |
del_Cpstp = [((((d4.*T68 + d3).*T68 + d2).*T68 + d1).*T68 + d0).*S + ... |
---|
154 |
((e2.*T68 + e1).*T68 + e0).*S3_2].*P + ... |
---|
155 |
[(((f3.*T68 + f2).*T68 + f1).*T68 + f0).*S + ... |
---|
156 |
g0.*S3_2].*P.^2 + ... |
---|
157 |
[((h2.*T68 + h1).*T68 + h0).*S + ... |
---|
158 |
j1.*T68.*S3_2].*P.^3; |
---|
159 |
|
---|
160 |
|
---|
161 |
cp = Cpst0 + del_Cp0t0 + del_Cpstp; |
---|
162 |
|
---|