NCCOOS Trac Projects: Top | Web | Platforms | Processing | Viz | Sprints | Sandbox | (Wind)

root/gliderproc/trunk/MATLAB/opnml/FCAST_1.2/isosurfq.m

Revision 495 (checked in by cbc, 12 years ago)

Initial import of Stark code.

Line 
1 function ho=isosurfq(Q,Z,m,constant,slev)
2
3 %H = isosurfq(Q, Z, MESH, CONSTANT, SLICE_INTERVAL)
4 %
5 %INPUTS:
6 %Q [nn x nnv]           = Scalar quantity
7 %Z [nn x nnv]           = Vertical locations of nodes
8 %MESH (fem_grid_struct) = mesh information
9 %CONSTANT               = value of scalar at isosurface
10 %SLICE_INTERVAL [2]     = x and y interpolation interval (1e4)
11 %
12 %OUTPUT STRUCTURE:
13 %H = handles to the triangle, quadrilateral, pentagonal and
14 %    hexagonal patches fo the isosurface.
15 %
16 %This code is derived from EQUISURF, available on the MATLAB web site
17 %and uses two mex files found therein:
18 %
19 %POLYGONS
20 %INTERP_EQUISURF (actually referred to as INTERP in the release, but
21 %                 this conflicts with other MATLAB routines).
22
23 %OPNML COMPLIANT 3-19-99 CVL
24
25 newplot;
26 if exist('slev')~=1;
27         slev=[1e4 1e4];
28 elseif length(slev)==1
29         slev=[slev slev];
30 end
31
32 % INTERPOLATE ONTO RECTANGULAR GRID
33
34 R=interprect(Q,Z,m,slev);
35
36 % PAD EDGES
37
38 %nneighb=conv2(~isnan(R.Q(:,:,1)),ones(3),'same');
39 %edgemap=nneighb.*isnan(R.Q(:,:,1))>1;
40 R.Q(find(isnan(R.Q)))=0*find(isnan(R.Q));
41
42 %for in=1:size(R.Q,3)
43 %       R.Q(:,:,in)=R.Q(:,:,in)+...
44 %               conv2(R.Q(:,:,in),ones(3,1),'same').*edgemap;
45 %end
46
47 % DETERMINE POLYGONS OF ISOSURFACE
48
49 [p3,p4,p5,p6] = polygons(R.Q, [], constant);
50
51 sh = 'interp';
52
53 % DEFAULT PARAMETERS DRAWN FROM SURFL.M
54
55 if nargin<6
56         p = [0.55 0.6 0.4 10];
57 end
58
59 % DETERMINE VIEW CONTROLS
60
61 [az,el] = view;
62
63 if az==0&el==90
64         az = 322.5;
65         el = 30;
66 end
67
68 az = az * pi / 180 + pi;
69 el = -el * pi / 180;
70 v = [cos(el)*sin(az), -cos(el)*cos(az), sin(el)];
71 s = [az*180/pi - 135, -el*180/pi];
72 saz = s(1) * pi / 180 + pi;
73 sel = -s(2) * pi / 180;
74 s(1) = cos(sel)*sin(saz);
75 s(2) = -cos(sel)*cos(saz);
76 s(3) = sin(sel);
77
78 view((az-pi)*180/pi, -el*180/pi);
79
80 % NORMALIZE PARAMETERS
81
82 p(1:3) = p(1:3) / sum(p(1:3));     
83
84 % CALCULATE INTERPOLATED SHADINGS
85
86 [c3,c4,c5,c6] = interp_equisurf(p3, p4, p5, p6, v, s, p);
87
88 % BEGIN PLOT
89
90 % Color for this value,
91 cmax=max(max(Q));
92 cmin=min(min(Q));
93 crange=cmax-cmin;
94 cmap=colormap;
95 [nc,mc]=size(cmap);
96 col=floor(nc*(constant-cmin)/crange);
97 col=cmap(col,:);
98
99 h = [];
100
101 for in=3:6
102         eval(['p=p',num2str(in),';'])
103         eval(['c=c',num2str(in),';'])
104
105         in = size(p,2);
106         if in > 0,
107                 if strcmp(sh,'flat'),
108                         c = mean(c);
109                 end
110                 in = in / 3;
111                 x=p(:,1:in);
112                 y=p(:,in+1:2*in);
113                 z=p(:,2*in+1:3*in);
114                 xr = interp3(R.XG,R.YG,R.ZG,R.X,x+1,y+1,z+1);
115                 yr = interp3(R.XG,R.YG,R.ZG,R.Y,x+1,y+1,z+1);
116                 zr = interp3(R.XG,R.YG,R.ZG,R.Z,x+1,y+1,z+1);
117 %               h = [h;patch(xr,yr,zr,c)];
118                 h = [h;patch(xr,yr,zr,col)];
119         end
120 end
121
122 % HANDLE OUTPUT NICELY
123
124 if nargout
125         ho=h;
126 end
Note: See TracBrowser for help on using the browser.