#!/usr/bin/env python # Last modified: Time-stamp: <2012-04-23 14:12:38 haines> """ how to parse data, and assert what data and info goes into creating and updating monthly netcdf files parse data met data collected on Campbell Scientific DataLogger (loggernet) (csi) parser : sample date and time, creator : lat, lon, z, time, updator : time, Examples -------- >> (parse, create, update) = load_processors('proc_csi_adcp_v2') or >> si = get_config(cn+'.sensor_info') >> (parse, create, update) = load_processors(si['adcp']['proc_module']) >> lines = load_data(filename) >> data = parse(platform_info, sensor_info, lines) >> create(platform_info, sensor_info, data) or >> update(platform_info, sensor_info, data) """ from raw2proc import * from procutil import * from ncutil import * now_dt = datetime.utcnow() now_dt.replace(microsecond=0) def parser(platform_info, sensor_info, lines): """ Example met data "TOA5","CR1000_B1","CR1000","37541","CR1000.Std.21","CPU:NCWIND_12_Buoy_All.CR1","58723","AMet_6Min" "TIMESTAMP","RECORD","Baro_mbar_Avg","RHumidity_Avg","RHumidity_Std","AirTempC_Avg","AirTempC_Std","Rain","Psp_Avg","Psp_Std","Pir_Wm2_Avg","Pir_Wm2_Std" "TS","RN","","","","","","","","","","" "","","Avg","Avg","Std","Avg","Std","Smp","Avg","Std","Avg","Std" "2011-11-01 00:00:59",4590,14.3792,75.59,0.579,15.67,0.05,-22.35,1197.037,45.58967,371.5126,0.9030571 "2011-11-01 00:06:59",4591,14.37995,74.96,0.912,16.61,0.048,-21,-1071.813,129.5147,381.2539,0.2076943 "2011-11-01 00:12:59",4592,14.3792,72.71,2.677,17.29,0.032,-15.58,-2056.658,0,381.1828,0.1402813 "2011-11-01 00:18:59",4593,14.3791,72.63,0.928,17.67,0.041,-19.64,-1895.86,9.866026,381.0333,0.2442325 """ import numpy from datetime import datetime from time import strptime # get sample datetime from filename fn = sensor_info['fn'] sample_dt_start = filt_datetime(fn) # how many samples (don't count header 4 lines) nsamp = len(lines[4:]) N = nsamp data = { 'dt' : numpy.array(numpy.ones((N,), dtype=object)*numpy.nan), 'time' : numpy.array(numpy.ones((N,), dtype=long)*numpy.nan), 'air_press' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'rh' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'rh_std' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'air_temp' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'air_temp_std' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'rain' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'psp' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'psp_std' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'pir' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), 'pir_std' : numpy.array(numpy.ones((N,), dtype=float)*numpy.nan), } # sample count i = 0 for line in lines[4:]: csi = [] # split line sw = re.split(',', line) if len(sw)<=0: print ' ... skipping line %d ' % (i,) continue # replace any "NAN" text with a number for index, s in enumerate(sw): m = re.search(NAN_RE_STR, s) if m: sw[index] = '-99999' # parse date-time, and all other float and integers for s in sw[1:]: m = re.search(REAL_RE_STR, s) if m: csi.append(float(m.groups()[0])) if sensor_info['utc_offset']: sample_dt = scanf_datetime(sw[0], fmt='"%Y-%m-%d %H:%M:%S"') + \ timedelta(hours=sensor_info['utc_offset']) else: sample_dt = scanf_datetime(sw[0], fmt='"%Y-%m-%d %H:%M:%S"') data['dt'][i] = sample_dt # sample datetime data['time'][i] = dt2es(sample_dt) # sample time in epoch seconds if len(csi)==11: # # data['samplenum'][i] = csi[0] # sample number assigned by datalogger in table data['air_press'][i] = csi[1] # Heise Barometer (mbar) data['rh'][i] = csi[2] # relative humidity avg (60 samples for 1 min) data['rh_std'][i] = csi[3] # relative humidity std data['air_temp'][i] = csi[4] # air temperature avg (deg C) data['air_temp_std'][i] = csi[5] # air temperature std (deg C) data['rain'][i] = csi[6] # precip gauge cummulative data['psp'][i] = csi[7] # PSP avg data['psp_std'][i] = csi[8] # PSP std data['pir'][i] = csi[9] # PIR avg (W m-2) data['pir_std'][i] = csi[10] # PIR std (W m-2) i=i+1 else: print ' ... skipping line %d -- %s ' % (i,line) continue # if re.search # for line # check that no data[dt] is set to Nan or anything but datetime # keep only data that has a resolved datetime keep = numpy.array([type(datetime(1970,1,1)) == type(dt) for dt in data['dt'][:]]) if keep.any(): for param in data.keys(): data[param] = data[param][keep] return data def creator(platform_info, sensor_info, data): # # # subset data only to month being processed (see raw2proc.process()) i = data['in'] title_str = sensor_info['description']+' at '+ platform_info['location'] global_atts = { 'title' : title_str, 'institution' : platform_info['institution'], 'institution_url' : platform_info['institution_url'], 'institution_dods_url' : platform_info['institution_dods_url'], 'metadata_url' : platform_info['metadata_url'], 'references' : platform_info['references'], 'contact' : platform_info['contact'], # 'source' : platform_info['source']+' '+sensor_info['source'], 'history' : 'raw2proc using ' + sensor_info['process_module'], 'comment' : 'File created using pycdf'+pycdfVersion()+' and numpy '+pycdfArrayPkg(), # conventions 'Conventions' : platform_info['conventions'], # SEACOOS CDL codes 'format_category_code' : platform_info['format_category_code'], 'institution_code' : platform_info['institution_code'], 'platform_code' : platform_info['id'], 'package_code' : sensor_info['id'], # institution specific 'project' : platform_info['project'], 'project_url' : platform_info['project_url'], # timeframe of data contained in file yyyy-mm-dd HH:MM:SS # first date in monthly file 'start_date' : data['dt'][i][0].strftime("%Y-%m-%d %H:%M:%S"), # last date in monthly file 'end_date' : data['dt'][i][-1].strftime("%Y-%m-%d %H:%M:%S"), 'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"), # 'creation_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"), 'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"), 'process_level' : 'level1', # # must type match to data (e.g. fillvalue is real if data is real) '_FillValue' : -99999., } var_atts = { # coordinate variables 'time' : {'short_name': 'time', 'long_name': 'Time', 'standard_name': 'time', 'units': 'seconds since 1970-1-1 00:00:00 -0', # UTC 'axis': 'T', }, 'lat' : {'short_name': 'lat', 'long_name': 'Latitude', 'standard_name': 'latitude', 'reference':'geographic coordinates', 'units': 'degrees_north', 'valid_range':(-90.,90.), 'axis': 'Y', }, 'lon' : {'short_name': 'lon', 'long_name': 'Longitude', 'standard_name': 'longitude', 'reference':'geographic coordinates', 'units': 'degrees_east', 'valid_range':(-180.,180.), 'axis': 'Y', }, 'z' : {'short_name': 'z', 'long_name': 'Altitude', 'standard_name': 'altitude', 'reference':'zero at mean sea level', 'positive' : 'up', 'units': 'm', 'axis': 'Z', }, # data variables 'air_press': {'short_name': 'air_press', 'long_name': 'Air Pressure', 'standard_name': 'air_pressure', 'units': 'mbar', 'z': sensor_info['barometer_height'], 'z_units' : 'meter', }, 'air_temp': {'short_name': 'air_temp', 'long_name': 'Air Temperature', 'standard_name': 'air_temperature', 'units': 'degC', 'z': sensor_info['temperature_height'], 'z_units' : 'meter', }, 'air_temp_std': {'short_name': 'air_temp_std', 'long_name': 'Standard Deviation of Air Temperature', 'standard_name': 'air_temperature', 'units': 'degC', }, 'rh': {'short_name': 'rh', 'long_name': 'Relative Humidity', 'standard_name': 'relative_humidity', 'units': '%', 'z': sensor_info['temperature_height'], 'z_units' : 'meter', }, 'rh_std': {'short_name': 'rh_std', 'long_name': 'Standard Deviation of Relative Humidity', 'standard_name': 'relative_humidity', 'units': '%', }, 'rain': {'short_name': 'rain', 'long_name': '6-Minute Rain', 'standard_name': 'rain', 'units': 'inches', }, 'psp': {'short_name': 'psp', 'long_name': 'Short-wave Radiation', 'standard_name': 'downwelling_shortwave_irradiance', 'units': 'W m-2', }, 'psp_std': {'short_name': 'psp_std', 'long_name': 'Standard Deviation of Short-wave Radiation', 'standard_name': 'shortwave_radiation', 'units': 'W m-2', }, 'pir': {'short_name': 'pir', 'long_name': 'Long-wave Radiation', 'standard_name': 'longwave_radiation', 'units': 'W m-2', }, 'pir_std': {'short_name': 'pir_std', 'long_name': 'Standard Deviation of Long-wave Radiation', 'standard_name': 'longwave_radiation', 'units': 'W m-2', }, } # dimension names use tuple so order of initialization is maintained dim_inits = ( ('ntime', NC.UNLIMITED), ('nlat', 1), ('nlon', 1), ('nz', 1), ) # using tuple of tuples so order of initialization is maintained # using dict for attributes order of init not important # use dimension names not values # (varName, varType, (dimName1, [dimName2], ...)) var_inits = ( # coordinate variables ('time', NC.INT, ('ntime',)), ('lat', NC.FLOAT, ('nlat',)), ('lon', NC.FLOAT, ('nlon',)), ('z', NC.FLOAT, ('nz',)), # data variables ('air_press', NC.FLOAT, ('ntime',)), ('rh', NC.FLOAT, ('ntime',)), ('rh_std', NC.FLOAT, ('ntime',)), ('air_temp', NC.FLOAT, ('ntime',)), ('air_temp_std', NC.FLOAT, ('ntime',)), ('rain', NC.FLOAT, ('ntime',)), ('psp', NC.FLOAT, ('ntime',)), ('psp_std', NC.FLOAT, ('ntime',)), ('pir', NC.FLOAT, ('ntime',)), ('pir_std', NC.FLOAT, ('ntime',)), ) # subset data only to month being processed (see raw2proc.process()) i = data['in'] # var data var_data = ( ('lat', platform_info['lat']), ('lon', platform_info['lon']), ('z', platform_info['altitude']), # ('time', data['time'][i]), # ('air_press', data['air_press'][i]), ('rh', data['rh'][i]), ('rh_std', data['rh_std'][i]), ('air_temp', data['air_temp'][i]), ('air_temp_std', data['air_temp_std'][i]), ('rain', data['rain'][i]), ('psp', data['psp'][i]), ('psp_std', data['psp_std'][i]), ('pir', data['pir'][i]), ('pir_std', data['pir_std'][i]), ) return (global_atts, var_atts, dim_inits, var_inits, var_data) def updater(platform_info, sensor_info, data): # # subset data only to month being processed (see raw2proc.process()) i = data['in'] global_atts = { # update times of data contained in file (yyyy-mm-dd HH:MM:SS) # last date in monthly file 'end_date' : data['dt'][i][-1].strftime("%Y-%m-%d %H:%M:%S"), 'release_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"), # 'modification_date' : now_dt.strftime("%Y-%m-%d %H:%M:%S"), } # data variables # update any variable attributes like range, min, max var_atts = {} # var_atts = { # 'wtemp': {'max': max(data.u), # 'min': min(data.v), # }, # 'cond': {'max': max(data.u), # 'min': min(data.v), # }, # } # data var_data = ( ('time', data['time'][i]), # ('air_press', data['air_press'][i]), ('rh', data['rh'][i]), ('rh_std', data['rh_std'][i]), ('air_temp', data['air_temp'][i]), ('air_temp_std', data['air_temp_std'][i]), ('rain', data['rain'][i]), ('psp', data['psp'][i]), ('psp_std', data['psp_std'][i]), ('pir', data['pir'][i]), ('pir_std', data['pir_std'][i]), ) return (global_atts, var_atts, var_data) #